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Executive Summary 
Transport electrification continuously increases globally and propagates to new, even-larger vehicle 

applications due to decreased costs, battery technology improvements, and charging infrastructure rollout. 

This work highlights the importance of strategic planning for large electric vehicle charging nodes, like 

depots, terminals, airports and ports. Specifically from the perspective of predicting future power 

requirements and how to satisfy energy demand using a combination of smart charging algorithms, local 

photovoltaic electricity production and battery energy storage systems. A case study is presented where 

developed tools and models are applied to an airport for high-power charging of future electric aircraft. 
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1 Introduction 
For an increasing number of transport applications, all-electric solutions are becoming a relevant option. For 
instance, in 2021, the global electric bus stock was 670 000 vehicles (4% of the global fleet), and the electric 
heavy-duty truck was at 66 000 (0.1% of the global fleet) [1]. By 2035, forecasts expect most new trucks to 
be electric in the US, EU and China [2]. The European Commission recently proposed far-reaching targets 
to amend the EU’s CO2 standards for trucks, trailers and buses, requiring, for instance, most new trucks to 
cut their emissions by 45% in 2030, 65% in 2035, and 90% in 2040 [3]. Furthermore, studies and reports 
now analyze the future potential for introducing regional electric aircraft [4] and interregional electric 
container shipping [5], to mention a few. However, enabling an electrification transition is not only a question 
of vehicle technology development. Building out adequate power supply infrastructure needs to happen in 
parallel, or even proactively, to reassure people and transport operators that the transition is supported by a 
reliable and accessible infrastructure system. Most likely, this must be a shared responsibility between the 
public and private sectors in terms of making the necessary investments and choosing the appropriate type 
of charging solutions. 

The underlying work presented in this paper explore potential challenges and possible solutions at larger 
nodes for stationary charging. All stationary charging locations handle vehicle arrivals and departures at 
different times during the day with various energy and power demands. What power capacity to install at a 
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specific site should be highly important, as it affects the attractiveness for transport operators to utilize the 
site (resulting in better economy of the charging infrastructure), and to make appropriate investments in 
charging equipment, grid connections, and other components. Connecting a site to higher power capacity 
means higher investment costs, and depending on the surrounding electricity grid there might also be 
limitations for what is possible to provide. Furthermore, as peak power costs (tariffs) are becoming more 
common in electricity pricing models (in Sweden all power grid companies must have adopted power tariffs 
by 2027 [6]), it is of interest to avoid high power imports from the grid when possible.  

In this paper, the aim is to provide an analysis of possible solutions to reduce peak-power import from the 
electricity grid and load balancing of the aggregated charging. This includes the implementation of smart-
charging algorithms as well as on-site electricity production and energy storage. Meaning, on one hand, direct 
power reduction measures by controlling charging levels and distributing power supply in time. And on the 
other, solving the power supply issue by using alternative sources to the electricity grid. 

2 Methodology 
The methodology presented in this paper constitutes of two key pillars; (i) understanding the energy demand 
and power distribution for a large charging node, and (ii) developing an analysis tool and control strategies 
for charging and power supply solutions to meet the demand with minimal grid load. The two pillars are 
closely connected since more information about demand and distribution improves the possibilities for 
strategic supply planning. For instance, at a public parking space for EVs, it might be difficult to know exactly 
when charging is requested (assuming no booking system is in place). This means that the power supply will 
either have to be installed for maximum possible occupancy and charging demand, or with use of some power 
management system working in real-time; making predictions of future demand patterns based on historical 
data. Infrastructure and power supply might not be a big (or costly) issue for smaller sites with few daily 
visitors in the lighter vehicle categories. However, for larger sites, or sites where visiting vehicles have large 
batteries and need high-power charging, the challenge quickly becomes more significant. Conversely, 
commercial fleets including e.g. buses, trucks, ferries or aircraft often rely on some predetermined schedule 
in time and space, meaning that the charging infrastructure can more easily be tailored to equal demand. 

As a representation of a larger charging node, this paper focuses on the case of an airport where a scheduled 
fleet of battery-electric aircraft relies on charging. Necessary simulation models and feasible future scenarios 
have been developed. A reference case is derived for the aircraft charging, followed by analysis of several 
energy and power supply system configurations in terms of potential to meet the demand and economical 
feasibility. Models used are generic and not specially adapted to airports; hence they can be applied to any 
charging node in continued studies given input data and information about vehicle fleets and site-specific 
prerequisites. In-house modelling has been conducted using Python, though other commercial tools have 
been used to simulate for instance on-site electricity production. 

2.1 Aircraft charging demand modeling 
The charging demand modeling is exemplified by the airport of Visby. Situated on the island of Gotland, 
Sweden (57°38'27.2"N, 18°17'45.67"E). Visby Airport is currently preparing to accept battery-electric 
aviation when commercially available [7], and several routes have been identified as potentially feasible for 
electric aviation [8]. Introducing electric aircraft operations might lead to increased power capacity 
requirements at an airport due to high-power charging during short turnaround times, which is why this is an 
interesting case to study. Using tools and methods developed in a previous work by the authors [9], a future 
scenario is defined as constituting six regional electric aviation connections, followed by flight simulations 
and scheduling. Each connection is within a range of approximately 200 km, shown in Figure 1, including 
the airports; Visby Airport (ESSV), Stockholm Bromma Airport (ESSB), Stockholm Skavsta Airport 
(ESKN), Norrköping-Kungsängen Airport (ESSP), Linköping/SAAB Airport (ESSL), Västervik Airport 
(ESSW) and Kalmar Airport (ESMQ). Limiting the distance to 200 km is considered feasible, at least initially 
for electric aircraft, based on the current battery technology [4].  

A daily flight schedule is developed for 16 fligths in each direction with Visby Airport as a regional hub. The 
distribution of flights is designed as a commuter-schedule with primarily morning and afternoon flights as 
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seen in Figure 2. The aircraft type used to simulate flight missions and resulting energy consumption is a 19-
seat battery-electric model, parameterized according with certification level CS/FAR-23 (19 seats and 
maximum take-off weight of 8,618 kg) [10]. A battery size of approximately 800 kWh is set for each of the 
aircraft. 

 
Figure 1: Identified possible electric flight connections within 200 km radius with Visby Airport as a regional hub. 

The schedule in Figure 2 is produced using a timetable optimization model with the objective to fulfil a 
desired daily flight demand (expressed as number of flights per connection, distributed over user-specified 
time intervals) with the minimum number of aircraft (i.e. maximizing operational time, and possible revenue, 
for each aircraft). The model considers factors such as flight duration, energy consumption, and minimum 
turnaround time needed for charging and taxiing to find the optimal working solution. In this scenario, four 
electric aircraft were needed (MF001-MF004). Flights are depicted as diagonal lines between airports (y-
axis), whereas stationary (turnaround) time is shown as horizontal lines. 

 
Figure 2: Visual representation of the optimized flight schedule. Flights are depicted as diagonal lines between 
airports (defined as airport codes on y-axis). Turnaroud times at airports are depicted as horizontal lines. Each 

colored line represent the daily traversal of one electric aircraft. 
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The schedule in Figure 2 is used to produce the charging scenarios at Visby Airport. Charging is simulated 
stepwise for each aircraft according to a maximum allowed charging profile, defined in earlier research [9] 
as, 

𝑃!"#(𝑡) = 𝐶$"%&(𝑡) ⋅ 𝐸'     ( 1 ) 

𝐶$"%&(𝑡) = 𝑓*𝑆𝑂𝐶(𝑡)-     ( 2 ) 

where 𝐶$"%&(𝑡) [1/h] is the rate at which the battery can be charged at time 𝑡, and 𝐸' [kWh] is the total battery 
capacity of the aircraft. The value of 𝐶$"%&(𝑡) is in turn a function of 𝑆𝑂𝐶(𝑡), which is the State-of-Charge 
(SoC) level of the battery at time 𝑡. For instance, a C-rate of 1.0C means that the battery can be charged from 
0-100% in one hour.  

Battery charging of EVs commonly follow a switch of modes, from initial constant-current, to constant-
voltage (CC-CV), where the battery cell voltage determines which of the modes that is active. When 
maximum cell voltage is reached, the battery cannot utilize maximum charging power anymore. The battery 
cell voltage is in turn affected by the SoC. Besides electrical limitations, higher charging powers (or C-rates) 
lead to increased battery degradation. [11] Using the approach from earlier work by the authors [9], a 
maximum charging profile is modeled starting at 2.0C for a fully discharged battery and with a stepwise 
reduction until 0.5C. Thus, as the battery size is set to approximately 800 kWh in this study, the aircraft could 
charge with up to 1.6 MW each with a fully drained battery. Chargers with those power levels are not 
commercially available today, but there is an ongoing initiative for development of a Megawatt Charging 
System (MCS) standard [12]. 

2.2 Charging control strategies and power supply alternatives 

2.2.1 Smart-charging 

As stationary time availability and energy demand differ between aircraft, it might happen that utilizing the 
maximum allowed charging power is not necessary to recharge the battery fully before the next departure. 
On these occasions, the charging power could be reduced, delayed or redistributed strategically in time to 
balance the total load at the charging node (in this case, the airport). Based on this, a heuristic smart-charging 
algorithm developed in earlier research by the autors [9] is applied to the outcome of the reference charging 
case to explore what could be achieved regarding peak-power reduction and load balancing. The algorithm 
is given an objective to meet the energy demand of every aircraft, but where the aggregated load is kept 
below a specified target. For the work presented in this paper, the algorithm has been further developed, by 
altering the target load based on local photovoltaic (PV) electricity production, and/or by adding a battery 
energy storage system (BESS) to support peak power reduction. 

2.2.2 Local electricity production to support charging 

A simulation model is applied to estimate the potential contribution from local PV production. Since this is 
highly dependent on seasonal variations in solar irradiation and site-specific prerequisites like available land 
area or possible orientations, a scenario is specifically developed for Visby Airport. 

Modelling of the PV installation is done using HelioScope, a web-based commercial PV system design 
software developed by Folsom Labs, providing accurate results for solar power production potential. In this 
paper, a feasible array location was selected as shown in Figure 3, where solar panels are installed as roofs 
on the airport parking lot. The array area is approximately 7,000 m2 and constitutes 3,168 modules with a 
rated power of 370 W/module, thus totalling 1.17 MW installed power capacity. Solar irradiation data for the 
selected geographical location is extracted for 2021, and the simulation produces hourly yield throughout the 
year. Accounting for specified efficiency, tilt and azimuth angles, shading and conversion losses, the 
simulation results estimate an annual yield of 1.125 GWh (962 kWh/kWp).  
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Figure 3: Modeled PV array location (marked as blue sections) at Visby Airport used in scenario analyses.  

Obtained PV production data is used to analyse the potential for reducing power import from the grid to meet 
the aircraft charging needs. This is done by altering the target load for the smart-charging algorithm, so that 
more power supply from the chargers is directed to times when power generation from the PV system is high.  

2.2.3 Battery energy storage to support charging 

Using a BESS is another potential solution to ensure power supply when needed, for instance by charging 
the BESS slower and/or during off-peak (when other loads are small) and discharge it when other loads are 
high (e.g. aircraft charging). This can also enable better utilization of local PV production which might not 
always match demand timewise, or if production is higher than the demand. 

The developed simulation model functionality enable BESS to be added to the airport by specifying three 
main parameters; battery capacity (kWh) and maximum charging and discharging powers (kW).  

The working principle of the BESS model is to prioritize peak shaving to meet the airport’s target value. A 
gradient-based algorithm is introduced that goes through the differences between the required smart-charging 
power and the target value. For time steps where the smart-charging result exceeds the target, the BESS 
discharge, and conversely charges when the target exceeds the smart-charging demand. Based on this, the 
algorithm propose a charging/discharging pattern for the BESS as, 

𝑃'(𝑡) = 𝑃!(𝑡) − 𝑓( ∙ ∆𝑃!"# − 𝑃)(𝑡)     ( 3 ) 

where 𝑃!(𝑡) [kW] is the target power at time 𝑡, 𝑓( is a value between [0,1] that dictates how much of the 
power difference the BESS should cover, ∆𝑃!"# [kW] is the maximum power difference between smart-
charging and target, and 𝑃)(𝑡) [kW] is the smart-charging power load at time 𝑡. If 𝑓( = 0 is possible, the 
BESS will manage to perfectly match the smart-charging with target in that time step. However, the process 
is initiated by a value larger than 0 for every time step, followed by a simulation according to proposed 
charging/discharging pattern and control of two criteria: 

1. That the BESS never exceeds maximum allowed charging or discharging power (as specified) 

2. That SoC levels of the BESS manage to stay within a predefined window (20-80% used in this paper) 

If both criteria are met, the value of 𝑓( is halved, otherwise doubled, and the process is repeated until the 
problem converges. 
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3 Results 
Four different scenarios are simulated and compared in terms of requirements and potential sources of power 
supply to meet the aircraft charging demand. The first scenario should be viewed as a worst-case, and the 
second scenario presents what can be achieved by introducing smart-charging (not optimized). The last two 
scenarios combine smart-charging with power supply from local PV generation, as well as using a BESS to 
cut remaining power peaks and more efficiently store produced PV electricity. Finally, an economic 
evaluation is conducted for a system including PV and BESS in terms of potential cost-savings for avoided 
peak power import or bought electricity from the grid. 

3.1 Reference scenario 
For the reference scenario, all aircraft charging sessions follow the maximum allowed charging profile in 
Equation (1). This reference case is denoted as independent fast-charging, as no ‘smart’ power management 
system is active. Rather all aircraft will charge according to their maximum charging profile until the battery 
is full (or until the next departure is due), without consideration to other charging sessions. Consequently, the 
aggregated capacity requirement for the airport becomes high. Next, the resulting load profile is obtained by 
summing the power load per time step for all charging sessions throughout the day at the airport. The peak-
power requirement in the reference case became approximately 1.8 MW as indicated in Figure 4 (including 
losses between charger and aircraft battery). Three chargers were required to fulfil the demand with respect 
to the logistics for aircraft arrivals and departure times, though at most two charging sessions are active 
simultaneously. The maximum charger power was 900 kW, i.e. roughly 1C for the 800 kWh aircraft batteries, 
meaning that the aircraft batteries are not fully drained upon arrival (due to relatively short flight distances) 
according to the modeling approach explained in Section 2.1. Since no local electricity production or energy 
storage is applied in this scenario, the power supply is completely covered by the surrounding electricity grid.  

 
Figure 4: Reference scenario where all aircraft charge in accordance with the maximum allowed charging 

profile. Three individual chargers were needed. The load for all active charging sessions have been summed in 
each time step throughout the day to form the total load profile, denoted as independent fast-charging. 

3.2 Smart-charging scenario 
The resulting airport load after introducing the earlier described smart-charging algorithm is presented in 
Figure 5 compared to the reference scenario. The target for the smart-charging algorithm in this case is a flat 
curve covering the time steps from the first aircraft arrival until the last aircraft departure, calculated as, 

𝑃"*+ =
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where 𝐸%-% [kWh] is the total energy demand, and 𝑡%-% is the total time from all aircraft visiting the airport 
throughout the day. As seen in Figure 5, this flat target curve could only be accomplished at the end of the 
day when the aircraft prepare to stay overnight, and thus can charge over a longer time period. There is still 
a visible peak pattern, though less tangible than the reference scenario, with a maximum peak at 
approximately 1.25 MW as seen during the morning hours in Figure 5. As no other source of power than the 
electricity grid is involved in this scenario either, the grid load will be same as the resulting smart-charging 
demand. 

 
Figure 5: Difference from reference scenario load curve for aircraft charging after introducing the smart-charging 

algorithm. The smart-charging target is seen as a dotted line. 

3.3 Smart-charging with PV scenario 
To what extent locally produced PV electricity can improve the smart-charging result regarding the need for 
imported power is seasonal and intra-day dependent. Figure 6 shows variations for a selection of simulated 
days (summer day, winter day, spring day, autumn day) for the modelled PV array at Visby Airport. There is 
a mismatch between the PV generation and the aircraft charging loads, as PV generation tends to peak mid-
day, whereas aircraft charging peaks during morning and afternoon hours; see Figure 5. The PV generation 
can deliver up to 900 kW for a clear-sky day. Still, this is significantly less in winter, offering a marginal 
contribution to load coverage. 

 
Figure 6: A selection of four seasonal days simulated with the PV model at Visby Airport. Summer day (2021-06-10), 

winter day (2021-01-01), autumn day (2021-10-15) and spring day (2021-03-22). 
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Throughout the continuation of this paper, analyses are based on PV production (spring day) according to the 
production curve in Figure 6. By feeding this into the smart-charging algorithm, its target power levels are 
changed, favouring charging at time steps with high PV generation, which means less power import from the 
grid. For time steps with little or no PV generation available, the target is instead decreased, aiming for a flat 
load curve. 

As seen in Figure 7, the smart-charging algorithm now alters the power limitations of the chargers in time 
steps with PV generation. However, the PV plant’s power supply is generally insufficient to fully satisfy the 
aircraft charging, especially in the afternoon and evening hours. Consequently, when subtracting the PV 
contribution from each time, several significant power peaks remain. Since other power sources have now 
been added that might decrease the demand for grid power, the resulting grid load will from now on be 
represented by negative values as seen in Figure 7. 

 
Figure 7: Difference from reference scenario load curve for aircraft charging and resulting grid load (negative) after 

introducing the smart-charging algorithm, and adding the “spring day” PV generation profile. 

3.4 Smart-charging with PV & BESS scenario 
The BESS model aims to eliminate the difference between smart-charging and the target load. If there is also 
a power supply from PV, the BESS will naturally act according to the PV-altered target load. Furthermore, 
the BESS will try to utilize the target power level to recharge whenever there is no or little need for aircraft 
charging. This also means that the BESS can charge more when PV generation is high, contributing to 
increased utilization of the locally produced electricity.  

For this scenario, a BESS is introduced with 2 MWh total capacity and charging/discharging maximum 
powers of 2 MW (1C). However, it will not discharge with higher power than needed to match the smart-
charging result with the target load, and not charge with higher power than the target allows.  

Figure 8 shows the result when extending the earlier developed “Smart-charging with PV scenario” (Section 
3.3) with the specified BESS. According to the earlier described working principle, the resulting 
charging/discharging pattern for the BESS has also been added here (positive when charging, negative when 
discharging). The resulting daily SoC of the BESS is shown in Figure 9. A starting SoC value of 50% has 
been set, which it manages to reach again at the end of the day. One thing to notice is that there is still 
unutilized mid-day PV generation since the BESS manage to charge fully (80%) before this, and then it is 
not needed until after lunch. In real life, other loads at the airport (heat, ventilation, lighting, service systems, 
ground support equipment, parked electric cars, etc.) might also benefit from the BESS, meaning it could 
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make more use of locally produced electricity. Anyhow, left-over PV generation can also be a source of 
income by selling it to the grid. Using this system configuration, the resulting power import from the grid 
could be limited to roughly 200 kW. 

 
Figure 8: Difference from reference scenario load curve for aircraft charging and resulting grid load (negative) after 
introducing the smart-charging algorithm, adding the “spring day” PV generation profile, and introducing a BESS. 

 
Figure 9: Daily State-of-Charge (SoC) variations for the BESS. The initial SoC is set to 50%. 

3.5 Evaluation of economic feasibility for PV & BESS 
An analysis of the economic feasibility of investing in a PV system and BESS is conducted based on potential 
savings due to the reduced need for peak power import, or amount of bought electricity, from the grid. Pricing 
models, including power tariffs, are under development. The customer is then charged based on both the 
amount of electricity consumed over time (kWh), as well as when it is consumed (kW). For instance, the 
customer might get charged based on the average of the N highest peak loads during the month.  

Prices for PV systems have decreased rapidly over the last decade, and the blended average price in the U.S 
is currently estimated to be between $1.50-$2.00/W [13]. Costs for utility-scale lithium-ion battery systems 
(4-hour duration) are projected to decrease, but estimations for today are around $300-$350/kWh [14]. Using 
the lower end of the intervals, the proposed PV and BESS system would total at approximately $2.4M for a 
1.17 MW PV plant and 2 MWh BESS. 

Assuming that the highest montly peak power is equal to those observed in the aircraft charging scenarios, 
then smart-charging results in a 550 kW decrease in grid peak power import compared to the reference 
scenario, whilst adding PV and BESS leads to a 1550 kW decrease. For convenience, the airport is assumed 
to be charged monthly for the single highest peak. Further, adding PV and BESS resulted in approximately 
50% less bought electricity from the grid (5500 kWh/day in the reference scenario, and 2800 kWh/day in the 
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scenario with smart-charging, PV and BESS). The peak power tariff is varied between $5-$40/kWpeak, and 
the average electricity price is set to 11.27 U.S cents/kWh according to the average for commercial consumers 
in 2021 [15]. Seeing both “avoided” peak-power import and non-bought electricity as the cost-saving relative 
to  the reference scenario, Figure 10 shows the computed pay-back period (PBP) in years for such a system 
purely based on these cost savings. Note that the results assume that every day of the year looks similar in 
terms of PV generation (spring profile) and utilization, which is not the case. Therefore, these calculations 
should preferably be performed throughout the year based on the simulated PV generation for each day, in 
future research. 

 
Figure 10: Estimated PBP in years of the PV plant and BESS as a function of peak-power tariff. The cost-saving per 

kWh for non-bought electricity import is estimated based on a set average for commercial customers in the U.S. 2021.  

4 Conclusions 
This paper explores smart methods and possible ways of solving the power supply puzzle at larger charging 
nodes where the requirements might become much more challenging. An airport was used as a case study, 
but the methodology is generic, meaning it could be applied to other nodes in continued research. Results 
indicate that there could be much to gain from using smart power management systems regarding reduced 
peak-power requirements and load balancing. Other than the cost perspective, the proposed solutions can 
offer other site-specific advantages. For instance, getting sufficient power supply infrastructure from the 
electricity grid ready in time to meet an accelerated adoption of electric transport might be more challenging 
in certain places. It is crucial to develop support by other means to these places, as they are also a part of a 
successful electrification in society. 

The work presented is a start, but more research is needed to better understand future demand and possible 
solutions, in what situation a particular solution should be preferred, what the actual cost of these systems is 
and how that changes depending on site-specific prerequisites. Also, what new business models that could 
arise when these sites go from being a natural hub in the transport- and logistics chain, to becoming part of 
the local and regional energy system, should be investigated. 

Lastly, the heuristic smart-charging algorithm presented in the work produces one possible solution for peak 
power reduction and load balancing, but not necessarily the optimal solution. Future work could focus on 
optimizing this, and in combination with local PV generation and BESS, as well as other active loads. 

  

5

7

9

11

13

15

17

5 10 15 20 25 30 35 40

Ye
ar

s

Peak-power tariff ($/kW)



 

EVS36 International Electric Vehicle Symposium and Exhibition      11 

Acknowledgments 

This work is done within the RES-flyg (Resource efficient energy system solutions for airports with high 
share of electric aviation) project, financially supported by the Swedish Energy Agency. The project ends in 
March 2023 and is a collaboration between RISE Research Institutes of Sweden, Uppsala University, 
Swedavia Airports, Visby Airport, and Skellefteå City Airport. 

References 

[1] IEA, Global EV Outlook 2022, https://www.iea.org/reports/global-ev-outlook-2022, acced on 2023-03-17 

[2] McKinsey & Company, Preparing the world for zero-emission trucks, 
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/preparing-the-world-for-zero-
emission-trucks, accessed on 2023-03-17 

[3] ICCT, Europe proposes world-leading decarbonization targets for trucks and buses, https://theicct.org/pr-
europe-co2-standards-trucks-feb-23/, accessed on 2023-03-17 

[4] ICCT, Performance analysis of regional electric aircraft, https://theicct.org/publication/global-aviation-
performance-analysis-regional-electric-aircraft-jul22/, accessed on 2023-03-17 

[5] Kersey, J., Popovich, N.D. & Phadke, A.A. Rapid battery cost declines accelerate the prospects of all-electric 
interregional container shipping. Nat Energy 7,664–674 (2022). 

[6] Swedish Energy Markets Inspectorate (Ei), https://ei.se/konsument/el/effekttariffer#h-
Storvariationihurelnatsforetagutformareffekttarifferna, accessed on 2023-03-17 

[7] Swedavia Airports, Swedavia continues preparations to handle electric aircraft – inauguration of new 
infrastructure for electric aircraft at Visby Airport, https://www.swedavia.com/about-swedavia/for-
press/swedavia-continues-preparations-to-handle-electric-aircraft--inauguration-of-new-infrastructure-for-
electric-aircraft-at-visby-airport/#gref, accessed on 2023-03-17 

[8] J. Leijon, et al., Airports with increased electrification – an ongoing project with case studies in Sweden, 
EVS35, Oslo, Norway, June 11-15, 2022 

[9] H. Alfredsson, J. Nyman, J. Nilsson, and I. Staack, Infrastructure modeling for large-scale introduction of 
electric aviation, EVS35, Oslo, Norway, June 11-15, 2022 

[10] EASA, Certification Specifications for Normal, Utility, Aerobatic, and Commuter Category Aeroplanes - CS 
23, EASA, 2009. 

[11] K. Qian, R. Fachrizal, J. Munkhammar, T. Ebel and R. Adam, The Impact of Considering State of Charge 
Dependent Maximum Charging Powers on the Optimal Electric Vehicle Charging Scheduling, in IEEE 
Transactions on Transportation Electrification, doi: 10.1109/TTE.2023.3245332. 

[12] CharIN, Whitepaper Megawatt Charging System, Recommendations and requirements for MCS related 
standard bodies and solution suppliers, Version 1.0, 2022 

[13] SEIA, Solar Industry Research Data, https://www.seia.org/solar-industry-research-data, accessed on 2023-
03-18 

[14] NREL, National Renewable Energy Laboratory, Cost Projections for Utility-Scale Battery Storage: 2021 
Update, https://www.nrel.gov/docs/fy21osti/79236.pdf, accessed on 2023-03-18  

[15] Statista, Average retail prices of electricity in the United States from 1998 to 2021, by sector, 
https://www.statista.com/statistics/200197/average-retail-price-of-electricity-in-the-us-by-sector-since-
1998/, accessed on 2023-03-21  



 

EVS36 International Electric Vehicle Symposium and Exhibition      12 

Presenter Biography 
 

 
 

 
 

 
 

 
 

 
 

 

Hampus Alfredsson (presenter) works as a researcher and project leader in electromobility 
at RISE Research Institutes of Sweden, Gothenburg. He received an MSc in Environmental 
Engineering and Energy Systems at Lund University in 2018. In his daily research, he 
works primarily with questions around charging infrastructure for electrified vehicles, 
including modeling and analyzing localization and smart utilization of the infrastructure 
from a fleet perspective. 
 
 
Patrik Ollas is an industrial PhD student at RISE Research Institutes of Sweden in Borås, 
Sweden. He received his MSc in Mechanical Engineering in 2012 and is since 2017 
pursuing his PhD degree in Electrical Power Engineering, focusing on solar photovoltaic, 
battery storage and direct current distribution in residential buildings. 
 
 
 
Sara Ghaem Sigarchian works as a researcher and project leader in the field of energy 
systems at RISE Research Institutes of Sweden, Stockholm. She received a PhD in 
Sustainable Energy Technology from the KTH Royal Institute of Technology in 2018. In 
her daily research, she works primarily with questions related to local energy systems and 
positive energy districts focusing on techno-economic analysis, energy system modeling, 
optimization and multistakeholder engagement. 
 

Christoffer Aalhuizen is a PhD student in electrical engineering at Uppsala University, 
focusing his research on high power charging for different types of transportation. In 2020 
he received a M.Sc. Degree in energy systems and a B.A. in business and economics. He 
is currently involved in projects revolving how EV chargers supplying more than 900 kW 
can be implemented into power grids. 

 

Jennifer Leijon is an associate senior lecturer working at Uppsala University, Sweden, 
currently with projects related to electromobility. She has a research interest in charging 
infrastructure and charging patterns for different types of electric vehicles, including 
electric aircraft. She received the Ph.D. degree in engineering physics in the Autumn 2020, 
from the Division of Electricity, and received her engineering physics degree in 2016. 

 
Karin Thomas is an associate professor at Division of Electricity at Uppsala University. 
Karin received her PhD in engineering physics in 2008 and docent degree in engineering 
physics with specialization in renewable energy in 2020. She is currently involved in 
several research projects regarding charging of electric vehicles and currently the project 
leader of RES-Flyg. 

 


